3.275 \(\int \frac{x^5}{(b x^2+c x^4)^{3/2}} \, dx\)

Optimal. Leaf size=55 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{b x^2+c x^4}}\right )}{c^{3/2}}-\frac{x^2}{c \sqrt{b x^2+c x^4}} \]

[Out]

-(x^2/(c*Sqrt[b*x^2 + c*x^4])) + ArcTanh[(Sqrt[c]*x^2)/Sqrt[b*x^2 + c*x^4]]/c^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0920113, antiderivative size = 55, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {2018, 652, 620, 206} \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{b x^2+c x^4}}\right )}{c^{3/2}}-\frac{x^2}{c \sqrt{b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[x^5/(b*x^2 + c*x^4)^(3/2),x]

[Out]

-(x^2/(c*Sqrt[b*x^2 + c*x^4])) + ArcTanh[(Sqrt[c]*x^2)/Sqrt[b*x^2 + c*x^4]]/c^(3/2)

Rule 2018

Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)
/n] - 1)*(a*x^Simplify[j/n] + b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]

Rule 652

Int[((d_.) + (e_.)*(x_))^2*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)*(a + b*x +
 c*x^2)^(p + 1))/(c*(p + 1)), x] - Dist[(e^2*(p + 2))/(c*(p + 1)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; Fr
eeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && LtQ[p,
-1]

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^5}{\left (b x^2+c x^4\right )^{3/2}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x^2}{\left (b x+c x^2\right )^{3/2}} \, dx,x,x^2\right )\\ &=-\frac{x^2}{c \sqrt{b x^2+c x^4}}+\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{b x+c x^2}} \, dx,x,x^2\right )}{2 c}\\ &=-\frac{x^2}{c \sqrt{b x^2+c x^4}}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x^2}{\sqrt{b x^2+c x^4}}\right )}{c}\\ &=-\frac{x^2}{c \sqrt{b x^2+c x^4}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{c} x^2}{\sqrt{b x^2+c x^4}}\right )}{c^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0783588, size = 66, normalized size = 1.2 \[ \frac{\sqrt{b} x \sqrt{\frac{c x^2}{b}+1} \sinh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{b}}\right )-\sqrt{c} x^2}{c^{3/2} \sqrt{x^2 \left (b+c x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^5/(b*x^2 + c*x^4)^(3/2),x]

[Out]

(-(Sqrt[c]*x^2) + Sqrt[b]*x*Sqrt[1 + (c*x^2)/b]*ArcSinh[(Sqrt[c]*x)/Sqrt[b]])/(c^(3/2)*Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

Maple [A]  time = 0.045, size = 62, normalized size = 1.1 \begin{align*}{{x}^{3} \left ( c{x}^{2}+b \right ) \left ( -x{c}^{{\frac{3}{2}}}+\ln \left ( x\sqrt{c}+\sqrt{c{x}^{2}+b} \right ) c\sqrt{c{x}^{2}+b} \right ) \left ( c{x}^{4}+b{x}^{2} \right ) ^{-{\frac{3}{2}}}{c}^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(c*x^4+b*x^2)^(3/2),x)

[Out]

x^3*(c*x^2+b)*(-x*c^(3/2)+ln(x*c^(1/2)+(c*x^2+b)^(1/2))*c*(c*x^2+b)^(1/2))/(c*x^4+b*x^2)^(3/2)/c^(5/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(c*x^4+b*x^2)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.17722, size = 325, normalized size = 5.91 \begin{align*} \left [\frac{{\left (c x^{2} + b\right )} \sqrt{c} \log \left (-2 \, c x^{2} - b - 2 \, \sqrt{c x^{4} + b x^{2}} \sqrt{c}\right ) - 2 \, \sqrt{c x^{4} + b x^{2}} c}{2 \,{\left (c^{3} x^{2} + b c^{2}\right )}}, -\frac{{\left (c x^{2} + b\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{c x^{4} + b x^{2}} \sqrt{-c}}{c x^{2} + b}\right ) + \sqrt{c x^{4} + b x^{2}} c}{c^{3} x^{2} + b c^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(c*x^4+b*x^2)^(3/2),x, algorithm="fricas")

[Out]

[1/2*((c*x^2 + b)*sqrt(c)*log(-2*c*x^2 - b - 2*sqrt(c*x^4 + b*x^2)*sqrt(c)) - 2*sqrt(c*x^4 + b*x^2)*c)/(c^3*x^
2 + b*c^2), -((c*x^2 + b)*sqrt(-c)*arctan(sqrt(c*x^4 + b*x^2)*sqrt(-c)/(c*x^2 + b)) + sqrt(c*x^4 + b*x^2)*c)/(
c^3*x^2 + b*c^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{5}}{\left (x^{2} \left (b + c x^{2}\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(c*x**4+b*x**2)**(3/2),x)

[Out]

Integral(x**5/(x**2*(b + c*x**2))**(3/2), x)

________________________________________________________________________________________

Giac [A]  time = 1.15527, size = 55, normalized size = 1. \begin{align*} -\frac{\arctan \left (\frac{\sqrt{c + \frac{b}{x^{2}}}}{\sqrt{-c}}\right )}{\sqrt{-c} c} - \frac{1}{\sqrt{c + \frac{b}{x^{2}}} c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(c*x^4+b*x^2)^(3/2),x, algorithm="giac")

[Out]

-arctan(sqrt(c + b/x^2)/sqrt(-c))/(sqrt(-c)*c) - 1/(sqrt(c + b/x^2)*c)